Predictive Analytics

Predictive Analytics umfasst eine große Anzahl an statistischen Methoden, die aktuelle und historische Daten zur Voraussage zukünftiger, unbekannter Ereignisse analysiert.

Definition: Was sind Predictive Analytics?

Predictive Analytics (dt. prädiktive/vorhersagbare Analysen) sind eine Teilmenge von Business Intelligence und Business Analytics, die verwendet wird, um Vorhersagen über unbekannte, zukünftige Ereignisse zu treffen. Dazu werden Techniken aus Data Mining, Statistik, maschinellem Lernen und künstlicher Intelligenz verwendet, um aktuelle und historische Daten zu analysieren und daraus Vorhersagen zu treffen. So können Risiken und Chancen für die Zukunft frühzeitig erkannt werden. Advanced und Predictive Analytics werden oft synonym verwendet. Advanced Analytics sind jedoch umfassender zu sehen und stellen den Oberbegriff dar, dessen Teilbereich Predictive Analytics ist.

Wie funktioniert Predictive Analytics?

Effiziente und zuverlässige Datenmanagementprozesse werden immer stärker nachgefragt, um die wachsenden Datenmengen ("Big Data") optimal zu bearbeiten, zu analysieren und zu nutzen. Per Algorithmus werden vorhandene Daten analysiert, bewertet und mit mathematischen Modellen Vorhersagen getroffen. Unternehmen profitieren von diesen Vorhersagen, aus denen hervorgeht, wie Kunden höchstwahrscheinlich reagieren werden. Der Ablauf ist dabei meist wie folgt:

  1. Festlegung der Ziele
  2. Daten sammeln und in die entsprechende Software für Predictive Analytics einpflegen
  3. Prüfung und Analyse der Daten sowie eventuelle Bereinigung
  4. Erstellung der prädiktiven Daten und Generierung automatischer Vorhersagemodelle für die Zukunft
  5. Integration der Daten ins Unternehmenssystem für den täglichen Entscheidungsfindungsprozess
  6. Modelle überwachen und verwalten

Was sind die Vorteile von Predictive Analytics?

In der Logistik können Unternehmen dank der prädiktiven Voraussagen besser disponieren und sind auf Kundenwünsche optimal vorbereitet. Chancen und Risiken werden durch das Vorhersagemodell frühzeitig erkannt und Störungen in der Supply Chain vermieden.

Die weiteren Vorteile im Überblick:

  • Zielgruppenorientiert handeln: Die Kundenzufriedenheit wächst und das Unternehmen bindet Kunden langfristig.
  • Aus historischen Daten lernen: Entscheidungen basieren auf der Auswertung historischer Daten, um in Zukunft besser agieren zu können.
  • Kosten und Risiken minimieren
  • Wettbewerbsvorteile: Trends werden frühzeitig erkannt und qualifizierte Leads generiert. 
  • Verbesserte Entscheidungsfindung und Einblicke
  • Höhere Effizienz: Bestände werden prognostiziert und Ressourcen optimal verwaltet

Vorteile von Predictive Analytics in der Absatzplanung

Einer der großen Vorteile bei der Nutzung dieser Methoden ist die sehr genaue Voraussage zukünftiger Verkaufszahlen und die damit in Verbindung stehenden Planungs- und Organisationsvorteile. Egal, ob bei Produktion, Transport oder Bestellung: Mit den Prognosen wird jeder dieser Bereiche effizienter gestaltet. Dies ermöglicht es, neue Geschäftsmodelle zu integrieren. Somit erhöht sich die Wertschöpfung und neu gewonnene Ressourcen werden im Unternehmen angelegt.

Begriffsabgrenzungen

Im Analytics Reifegradmodell von Gartner wird die Begriffsabgrenzung über die vier Stufen deutlich: 

  • Descriptive Analytics
    • Was ist passiert? Aus der Vergangenheit lernen und versuchen, Auswirkungen auf die Gegenwart zu verstehen.
  • Diagnostic Analytics
    • Warum ist es passiert? Gründe, Auswirkungen, Folgen
  • Predictive Analytics
    • Was wird passieren? Ausblick in die Zukunft und Vorhersagen
  • Prescriptive Analytics
    • Was müssen wir tun, damit ein Ereignis (nicht) eintritt? Handlungsempfehlungen, um zukünftige Ereignisse zu beeinflussen

Predictive Analytics im Unternehmen

Für Unternehmen sind solche Voraussagemodelle für die Erkennung von Risiken und Chancen ein großer Gewinn, da sich u.a. die Mustererkennnung von Vergangenheitsdaten als sehr effektiv herausgestellt hat. Der wichtigste Effekt dieser Herangehensweise ist, dass die prädiktive Analytik bestimmte Wahrscheinlichkeiten für jede individuelle Größe bereitstellt, um organisatorische Prozesse zu unterstützen und in diesem Fall die Absatzplanung sowie die Disposition eines Unternehmens zu optimieren.

Im Unternehmen ergeben sich für Predictive Analytics Tools viele Anwendungsgebiete. So unterstützen die Methoden z.B. bei der Absatzplanung die Trend- und Mustererkennung, einschließlich Auswirkungen von Saisons und Feiertagen auf das Kaufverhalten.

Zum Einsatz prädiktiver Analysen braucht man entsprechende Software, die mit den Massendaten und Informationen umgehen kann. 

Sonstiger Gebrauch von Predictive Analytics

Neben diesen Bereichen werden Predictive Analytics auch im Controlling, im Marketing, in der Marktforschung, im Personalmanagement, in der Datenanalyse oder bei der Betrugserkennung z.B. von Kreditinstituten eingesetzt. In der Produktion können die Vorhersagen erkennen, wann welche Maschine gewartete werden muss, bevor es zu Ausfällen kommt.

Noch mehr Wissen in unseren REMIRA Whitepapern

In unseren Whitepapern erhalten Sie nützliche Praxistipps rund um die Themen Supply Chain und Omnichannel Commerce.

Integriertes Sales & Operations Planning Bild

Integriertes Sales & Operations Planning

Kostenlos anfordern
Out-of-Stocks vermeiden - Verfügbarkeit erhöhen Bild

Out-of-Stocks vermeiden - Verfügbarkeit erhöhen

Kostenlos anfordern
Die optimale Supply Chain für den Ersatzteilhandel Bild

Die optimale Supply Chain für den Ersatzteilhandel

Kostenlos anfordern
Lagerverwaltung für Logistikdienstleister Bild

Lagerverwaltung für Logistikdienstleister

Kostenlos anfordern
Leitfaden Lieferantenintegration Bild

Leitfaden Lieferantenintegration

Kostenlos anfordern
Einfach Inventur: Der Inventurleitfaden Bild

Einfach Inventur: Der Inventurleitfaden

Kostenlos anfordern
Vendor Managed Inventory: Vorteile für Händler und Lieferanten Bild

Vendor Managed Inventory: Vorteile für Händler und Lieferanten

Kostenlos anfordern
S&OP in der Lebensmittelbranche Bild

S&OP in der Lebensmittelbranche

Kostenlos anfordern

Alle Glossar-Begriffe

API Artikelnummer ASIN Auftragsabwicklung Augmented Reality Automatische Disposition Automatisches Kleinteilelager (AKL) AutoStore Avisierung Bedarfsplanung Belegausgabepflicht Beleglose Lagerführung Beschaffung Beschaffungslogistik Beschaffungsplanung Best-of-Breed Bestand Bestandscontrolling Bestandsreduzierung Big Data Blockchain Bottom-Up Planung Business Intelligence Software Buy Box Chaotische Lagerhaltung Charge Click and Collect Click and Reserve Cloud Commerce CMR-Frachtbrief Corporate Social Responsibility Curated Shopping Curbside Pick-up Customer Experience Management Customer Journey Customer Relationship Management (CRM) Data Warehouse Digital Commerce Digital Signage Direct-to-Consumer (D2C) Distributionslager Distributionslogistik Dropshipping DSFinV-K Durchlaufregal Durchlaufzeit (DL) E-Commerce E-Procurement EAN EDI - Electronic Data Interchange EDI Clearing Center EDIFACT Endless Aisle ERP-System Exoskelett Fahrerloses Transportsystem (FTS) FEFO FIFO Fiskalisierung Fiskalspeicher Flottenmanagement Flurförderfahrzeug Fourth Party Logistics - 4PL Frontend Fulfillment Gamification Gegenstrom­­­verfahren Geschenkbon GoBD Großhandel GTIN - Global Trade Item Number Handling Unit HIFO Hochregallager Integrierte Planung Internet of Things (IoT) Intralogistik Inventursoftware IWD PS 880 Just-in-Time Kassensicherungsverordnung (KassenSichV) Kaufentscheidung Key Performance Indicator (KPI) Kommissioniermethoden Kommissionierung Kommissionier­verfahren Kommissio­nier­lager Konsignationslager Kontraktlogistik Kuppelproduktion Ladeeinheit Ladehilfsmittel Lager Lagerarten Lagerbestand Lagerhaltung Lagerhaltungskosten Lagerkennzahlen Lagerlogistik Lagerumschlagshäufigkeit Lagerverwaltung Lagerverwaltungssystem Lebensmittellogistik Lieferantenintegration Lieferfähigkeit LIFO LOFO Logistik und ihre Teilbereiche Logistikdienstleister Losgrößen Management by Exception Materialfluss Materialwirtschaft Maximalbestand MDE-Gerät Meldebestand Micro-Hub Mindestbestand Mobile Commerce (M-Commerce) Mobile Datenerfassung mPOS (Mobile Point of Sale) Multi-Echelon-Optimierung Multi-Order-Picking Multichannel Nullbon Omnichannel Omnichannel Commerce Order Management Out-of-Stock Payment Provider Permanente Inventur Pflichtenheft Pick-by-Cart Pick-by-Light Pick-by-Paper Pick-by-Scan Pick-by-Voice Pick-by-Watch POS (Point of Sale) Predictive Analytics Product Experience Management (PXM) Product Lifecycle Management (PLM) Produktinformations­management (PIM) Produktionslogistik Quick Commerce Radio Frequency Identification (RFID) Recommendation Engines Regalbediengerät (RBG) Repricing Responsive Design Retail Retoure Retourenmanagement Return on Investment (ROI) Return-in-Store Rollierende Planung ROPO-Effekt Self-Checkout SGTIN Ship-from-Store Showrooming Sicherheitsbestand SKU Social Commerce Software Software-as-a-Service (SaaS) Space Management Stationärer Handel Stichprobeninventur Streuverlust Stückgut Stückliste Supply Chain Supply Chain Management Technische Sicherungs­einrichtung (TSE) Third Party Logistics (3PL) Top-Down Planung Track & Trace Transportlogistik Transportmanagement TUL-Prozesse Umlagerung Umschlagslager Umschlagslogistik Unified Commerce Unternehmenslogistik Value Added Services Virtuelles Lager Voice Commerce Vor- und nachverlegte Inventur Vorratslager Warehouse Management System Warenausgang Warendisposition Wareneingang Warenwirtschaftssystem Wiederbeschaffungszeit Zeitfenster­management Zentrallager Zwischenlager